A category of modules for the full toroidal Lie algebra . Yuly Billig
نویسنده
چکیده
Toroidal Lie algebras are very natural multi-variable generalizations of affine Kac-Moody algebras. The theory of affine Lie algebras is rich and beautiful, having connections with diverse areas of mathematics and physics. Toroidal Lie algebras are also proving themselves to be useful for the applications. Frenkel, Jing and Wang [FJW] used representations of toroidal Lie algebras to construct a new form of the McKay correspondence. Inami et al., studied toroidal symmetry in the context of a 4-dimensional conformal field theory [IKUX], [IKU]. There are also applications of toroidal Lie algebras to soliton theory. Using representations of the toroidal algebras one can construct hierarchies of non-linear PDEs [B2], [ISW]. In particular, the toroidal extension of the Korteweg-de Vries hierarchy contains the Bogoyavlensky’s equation, which is not in the classical KdV hierarchy [IT]. One can use the vertex operator realizations to construct n-soliton solutions for the PDEs in these hierarchies. We hope that further development of the representation theory of toroidal Lie algebras will help to find new applications of this interesting class of algebras. The construction of a toroidal Lie algebra is totally parallel to the well-known construction of an (untwisted) affine Kac-Moody algebra [K1]. One starts with a finite-dimensional simple Lie algebra ġ and considers Fourier polynomial maps from an N + 1-dimensional torus into ġ. Setting tk = e ixk , we may identify the algebra of Fourier polynomials on a torus with the Laurent polynomial algebra R = C[t0 , t ± 1 , . . . , t ± N ], and the Lie algebra of the ġ-valued maps from a torus with the multi-loop algebra C[t±0 , t ± 1 , . . . , t ± N ] ⊗ ġ. When N = 0, this yields the usual loop algebra. Just as for the affine algebras, the next step is to build the universal central extension (R⊗ ġ)⊕K of R⊗ ġ. However unlike the affine case, the center K is infinite-dimensional when N ≥ 1. The infinite-dimensional center makes this Lie algebra highly degenerate. One can show, for example, that in an irreducible bounded weight module, most of the center should act trivially. To eliminate this degeneracy, we add the Lie algebra of vector fields on a torus, D = Der (R) to (R⊗ ġ)⊕K. The resulting algebra,
منابع مشابه
Vertex operator algebras and the representation theory of toroidal algebras
An explicit vertex operator algebra construction is given of a class of irreducible modules for toroidal Lie algebras. AMS (MOS) Subject Classifications:17B69, 17B68, 17B66, 17B10.
متن کاملct 2 00 9 Representations of toroidal extended affine Lie algebras
We show that the representation theory for the toroidal extended affine Lie algebra is controlled by a VOA which is a tensor product of four VOAs: a sub-VOA V + Hyp of a hyperbolic lattice VOA, affine ˙ g and sl N VOAs and a Virasoro VOA. A tensor product of irre-ducible modules for these VOAs admits the structure of an irreducible module for the toroidal extended affine Lie algebra. We also sh...
متن کاملModules of the toroidal Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$
Highest weight modules of the double affine Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$ are studied under a new triangular decomposition. Singular vectors of Verma modules are determined using a similar condition with horizontal affine Lie subalgebras, and highest weight modules are described under the condition $c_1>0$ and $c_2=0$.
متن کاملar X iv : m at h / 02 01 31 3 v 1 [ m at h . R T ] 3 1 Ja n 20 02 To Robert Moody Energy - momentum tensor for the toroidal
Energy-momentum tensor for the toroidal Lie algebras. Abstract. We construct vertex operator representations for the full (N + 1)-toroidal Lie algebra g. We associate with g a toroidal vertex operator algebra, which is a tensor product of an affine VOA, a sub-VOA of a hyperbolic lattice VOA, affine sl N VOA and a twisted Heisenberg-Virasoro VOA. The modules for the toroidal VOA are also modules...
متن کاملJet Modules.
In this paper we classify indecomposable modules for the Lie algebra of vector fields on a torus that admit a compatible action of the algebra of functions. An important family of such modules is given by spaces of jets of tensor fields. 0. Introduction. In recent years there was a substantial progress in representation theory of infinitedimensional Lie algebras of rank n > 1, toroidal Lie alge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009